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Phase Diagrams of Lattice Systems with 
Residual Entropy. lI. Low Temperature Expansion 
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For some lattice systems with an infinite number of ground states, it is shown 
that the pressure and the coexistence surfaces of several phases admit 
asymptotic expansions around T=0. In particular, it follows that the 
coexistence surfaces are differentiable at T=0, and at low temperatures the 
stable states are those with maximal residual entropy. The results are applied to 
construct the phase diagrams for several spin-1 models. 
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1. I N T R O D U C T I O N  

This paper  is the cont inuat ion of our  earlier work (1) in which we studied 
the phase diagram of lattice systems with residual entropy. In these 
systems, the number  of g round  state configurations (gsc) in finite volumes 
increases exponentially with the volume. Our  main idea was to introduce 
a part i t ion of  the set of gsc into equivalence classes and to replace, if 
possible, the finite number  of periodic gsc for the Pigorov-Sinai  (PS) 
theory (2'3) by the finite number  of  periodic classes. Under  certain condi- 
tions which we recall in Section 2, we could extend the PS theory for this 
case. In the present paper,  we adopt  Slawny's method (4) to describe the 
low-temperature  phase d iagram for these models. 

Given an r -parameter  family of  Hamil tonians  H(;L), ;L s Nr  the phase 
d iagram at zero temperature is a part i t ion { A I ( T = O ) }  of the parameter  
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space Nr into domains where the gsc are the same: the subscript I labels the 
set of configurations which are gsc in the given domain. One is then 
interested to know whether this partition will deform continuously as the 
temperature T =  lift is raised, to give domains {AI(T)} of pure phases of 
H(k) which are small perturbations of the corresponding gsc. To answer 
this question, one singles out a point element A:0(0)= {k0} of the zero- 
temperature partition. If H(ko) has d = r + l  gsc and {A~(0)} in a 
neighborhood of ko is homeomorphic to the natural partition of the 
boundary of the positive octant in R d, then the PS theory (or our exten- 
tion) proves the continuity of the phase diagram at T =  0. Without restrict- 
ing the generality, one can choose ko = 0. For a fixed k* in a neighborhood 
of ko, one would like to know which of the gsc of H(k*) will be stable with 
respect to thermal perturbations. Clearly, the knowledge of At(T) for small 
T permits us to identify the stable gsc of H(k*). A method to determine the 
low-temperature form of At(T) is proposed by Slawny. (4) Consider 
A1o(r ) = {k(r)}, i.e., a single point for any T, where Z(0)= k 0. In the case 
when H(ko) has a finite number (d=  r + 1) of periodic gsc, Slawny shows 
that the function la(fl)= flk(1/fl) has an asymptotic expansion of the form 
~n >t 1 la, exp [ - flE~], where 0 < El < E2 < .. -, and gives prescriptions to 
calculate the coefficients of this series. This method can easily be adapted 
to describe the phase diagram in the neighborhood of a general kl ~ A1(0) 
(see Section 4). 

Successful extensions of the PS theory and Slawny's method were 
obtained in recent works by Bricmont and Slawny, (5'6) where periodic gsc 
are replaced by restricted ensembles. (7) Their method, however, cannot be 
applied to models with residual entropy, our actual concern. 

The modification to add to Slawny's description in order to include 
models with residual entropy is simple to summarize, once we know that 
the PS theory applies. The limit of la(fl) as fl --* oe will be nonvanishing, 
i.e., the asymptotic expansion of la(fl) starts with a nonzero constant la o 
depending linearly on the differences in the residual entropies of the 
different classes. This has as a consequence that the coexistence curve k(T) 
is differentiable at T-= 0 with a nonvanishing derivative, in contrast with 
the vanishing derivative of k(T) at T = 0  in the problems considered by 
Slawny and by Bricmont and Slawny. This permits us to write AI(T)~ 
AI(O ) + Tllo, and to determine the domains of weak stability (as defined by 
Dobrushin and Shlosman (s)) of the different classes. In particular, we 
obtain that for fixed k, the stable classes of H(Z) have maximal residual 
entropy, reproducing thereby a result by Aizenman and Lieb. (9) 

In the next section, we describe the precise conditions under which our 
treatment is applicable. In Section 3, we discuss the low-temperature 
expansion appropriate in our case and announce a theorem on the 
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asymptotic expansion of the pressure in the thermodynamic limit. In 
Section 4, we formulate a theorem on the asymptotic expansion of the 
coexistence curve 2(T). Section 5 contains the proofs of the two theorems 
and Section 6 the conclusions that the results imply for the phase diagram. 
We present several illustrations on spin-1 models in the last section. 

2. D E S C R I P T I O N  OF T H E  S Y S T E M  

Let I_ = 7/v be a v-dimensional simple cubic lattice. With each site i �9 0_ 
is associated a finite set D,. ~ Do, where x(i) �9 D~ is the "value of the spin" 
at i. The configuration space is D = ~2o ~. For  any x �9 s and any A c [k, xA = 
{x(i)[ i �9  A } �9 g?~=f2 A. 

The system is described by the formal Hamiltonian 

Ho(x ) = ~ (r ~(~)(x) = O~)(xs), (B c ~) (2. l) 

We assume that the interaction is of finite range and periodic (i.e., invariant 
under a subgroup ~_ of ~ with finite index). Without loss of generality we 
shall suppose that min{~b~)(x)[x �9 g2} = 0. The main assumptions on the 
interaction are the following: 

(i) ~b (~ is an m-potential, i.e., the following set G[Ho]  is nonempty 
and defines the ground-state configurations: 

aEHo/= 

Thus, s �9  minimizes each q$~). 

(ii) ~b (~ satisfies the factorization condition: there is a partition 
Q- = L)~ A~ of ~_ into rectangular cells A~ = A o + t: with t~ �9 [, and there is 
a partition of U2A 0, 

d + l  

D40= ~) ..o(e)Ao (2.2) 
p ~ l  

such that 
d 

G[tto] = U Gp with Gp = @ D(P)a~ (2.3) 
p = l  

Here, D(P)~U2 (p) Notice that any class Gp is invariant under a subgroup A~ ~ AO " 

~_p of ~_ which contains at least all the t~. 
The residual entropy of the class Gp is 

1 
ap = ] - ~  log [g2]P0)[, p = 1 ..... d (2.4) 
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We consider H0 to be embedded into a (d -1) -paramete r  family of 
Hamiltonians with faetorizable m-potentials: 

where 

and 

H =  H o + k .  H'  (2.5) 

= (2(:)) ~ Rd 1 (2.6) 

H '  = (H (j)) = ~ (fD~)) = ~ r 
B B 

dO~: f 2 ~ N  d-~ (2.7) 

We suppose that H'  completely splits the degeneracy of the classes, but 
preserves it within each class: 

(a) ~b~)(sl)= q~)(s2) for any j, p and any sl, s2~Gp. 

(b) Let e(/) denote the energy density of the configurations in Gp 
with respect to H (:), 

( j )_e(J)(s)= 1 ~ ~ (J~)(s)/IBI, s~Gp (2.8) 
e p  - -  ~--~~ i o B ~ i  

Then the matrix E given by 

E, - e (j) - -  e ]  j )  (2.9) ~J-- i + 1  

is invertible, i.e., the vectors e2-e l , . . .  , e a - e l ,  where 

(j) Rd-  i ep = (ep ) ~ (2.10) 

are linearly independent. 
Let us remark that Idet El is unchanged if el is replaced by ek in the 

definition of E, so that the condition (b) is symmetric with respect to the 
ground states. 

Then, for any sufficiently small L, there exists I ~  (1,..., d} such that 

G[H] = U Gp (2.11) 
p r  

where G[H] is the set of configurations minimizing ~b B = ~b~ ) + k.  ~ for 
each B. Therefore H is also defined by an m-potential, satisfying the 
factorization condition. 

In the following, we shall use the notation 

Ix =/7~, = (#(J)) (fl = T -~ = inverse temperature) (2.12) 
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3. L O W - T E M P E R A T U R E  E X P A N S I O N S  

To avoid surface contributions in the LT expansions in finite volumes, 
we will work with some sets s of configurations such that 
x~f2(Alp) is both periodic and percolating for the class G v. More 
precisely, for any configuration x ~ (2, consider the union of wrong cells 
with respect t o  Gp, 

(3.1) 
Sp(x) --- [) {A~I dist(A#, alp(X)) ~< R} 

where R denotes the range of the interaction. Let A be a finite rectangular 
subset of O_, union of cells A~. With any XA ~ Y2A we associate the periodic 
configuration x~(2 defined by the translates of XA. By definition, 
x ~ (2(A I P) if every component of Sp(x) is finite [component of Sp(x) = 
maximal connected subset of Sp(x)]. 

Any x~f2(AIp) can be represented on the torus T,. Consider the 
partition 1_= UiAi into translates of A, 

Ai=A+zA(i), ~-A={TA(i)}~n- (3.2) 

Then Sp(x) will be represented by Sp(x) rood A. The D_A-inequivalent com- 
ponents of Sp(x) remain disconnected on TA and the representation of any 
component M on TA is faithful in the following sense: 

JMmod AI = Im[ 

I {nearest neighbor pairs of M rood A }t 

= [ {nearest neighbor pairs of M}J 

Observe that s I p) is ~_p-invariant. 
The periodic Hamiltonian is the function on s I p) given by 

1 
--AI4P~ Z Z ~~(fl~b~)+la'0B) (3.3) 

i~A B ~ i  

and the thermodynamic partition function is 

Ztn(A I p)  = 
x~s 

Z(AIp) = Z 
xcg2(AIp)  

expE-HPer(x)] = [ exp( -  IAlep -la)J Z(AI p) (3.4) 

exp[-Hper(xls)], s~Gp (3.5) 
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Here and in the sequel x ls in the argument of a Hamiltonian means that 
~b~)(x) has to be replaced by ~b~)(x)- ~b~)(s). 

Furthermore, the factorization condition implies 

�9 1 
l i r a  ~ log Z(A[p)  = Crp (3.6) 

The corresponding pressures are 

1 
P~h(/3, It[ p ) = ~ l o g  z th(Alp)  (3.7) 

PA(fl, Ill P) = ~ log Z(AI p) (3.8) 
v i i  

i.e., 

e;,~(/~, ~1 p) = -e~ . .  + P.(~,  ~1 p) (3.9) 

In the infinite-volume limit the thermodynamic pressure pth, defined by the 
limit A ~ l_ of (3.7), is independent of the boundary condition. It is related 
to P, defined by the limit A ---, ~_ of (3.8), by the equation 

Pth(/3, , )  = --% .It + P(fl, , I P )  (3.1o) 

We shall now introduce the LT expansion of the partition function and of 
the pressure in terms of excitations with respect to the class Gp. 

An elementary excitation ~ = Ix]  with respect to Gp is a class of con- 
figurations in ~2 with the same connected, finite support S(~)=  Sp(x), and 
the same configuration on the support. For t~_,  T t[x]= [Ttx] is the 
translate of Ix]  where (Ttx)(i)= x ( i - t ) .  Let X p denote the family of all 
elementary excitations with respect to Gp. A multiplicity function 0 is a 
mapping ~ ~ 0(~) from X p into the nonnegative integers such that 0(r = 0 
for almost all ~. Let [X p] denote the family of all multiplicity functions on 
X p. For any k' c ~_, 0~ and 02 e [X p] are called n_'-equivalent if there is 
some t~ n_' such that 02(~)=01(T,~) for all r  p. Below, Z L' will mean 
summation over U-inequivalent multiplicity functions. 

Using the factorization condition, we have 

Here 

Z(AIP) -=elAL~ Z ~A l-[ e-~162162162 Da(O) (3.11) 
O~[XP] ~ X P  

0<~1 

H(~)=~Ho(~)+l t 'H ' ( r  (3.12) 
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if # = [x]  and s ~ Gp, and 

i if the representations of {S(~) I 0(~) = 1 } 
DA(O) = on TA are pairwise disconnected and faithful 

otherwise 

Let 

# = {Ho(xls)[ s ~ G[Ho], x = s a.e. } (3.13) 

denote the discrete additive set of excitation energies for Ho. Thus, 

e = {Eo, El ,  E2,... } 
(3.14) 

E 0 = 0 < E , < E 2 < . . -  

E~ + Ej e # for any i, j 

Following standard techniques, (1~ we obtain the expansion 

P~(fl, PIP) = a~ + F, a2)(~l p)e ~E, (3.15) 
n ~ > l  

a(A)(~l p ) = ]E/~_p 1-1 y,m, ~b(O) CA(O) (3.16) 
0 e [XP] 

Ho( O) = E .  

1 m(O)=~exp{-O(~)[~.H'(~)+~JS(~)l]} (3.!7) 

where 

Ho(O) = ~ 0(~) Ho(~) 
g_ 

CA(O) is a combinational factor that we give in the Appendix. For any 
fixed 0, it agrees with the usual factor, (1~ CA(O) = C(O), if A is sufficiently 
large. 

We notice that for any finite A the expansions (3.15) converge for 
fl>flo(A, It, p). The conditions on the interaction imply that excitations 
with a finite energy have a finite support. It then follows that for A 
sufficiently large 

a(,A)(~l p)=an(P,[ p ) =  IO-/Ep[-1 F, ~" 4(0) C(O) (3.18) 
0 �9 [XP] 

Ho(O) = En 

In other words, as A -~ 0_ the formal series (3.15) converges in the space D 
of formal series to 

P(~, ~1 p) = % + Y~ a.(~l p)e -~E" (3.19) 
n>~l  
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However, since the asymptotic expansion of a function is unique, 

- % "  It + P(fl, It lP) (3.20) 

cannot be the asymptotic expansion of the pressure pth(fl, It) for all p 
(unless I t = 0  and the classes Gp are related by symmetries of the 
Hamiltonian). In Section 5, we prove the following result. 

T h e o r e m  1. Consider the (temperature-dependent) Hamiltonian 

H(/~) = He +/~-'It(/~) " n '  

where It(fl) is an arbitrary function which admits an asymptotic expansion 
around/~ = Go: 

I t ( f l )~l i (f l )= ~ lane -~En (3.21) 
n>~O 

If for all f l> tic there exists an equilibrium state of H(fl) which is a small 
perturbation of the class Gp, then the thermodynamic pressure pth(fi)= 
pth(fl, It(fi)) has an asymptotic expansion and 

pth(fl) ~ --ep. li(fl) + [~(fl, li(fi) lP) (3.22) 

4, A S Y M P T O T I C  E X P A N S I O N  OF THE PHASE D I A G R A M  

In ref. 1 we extended the Pirogov-Sinai theory to m-potentials satisfy- 
ing the factorization condition. This implies, among others, that there is 
some curve k(T), T=f1-1, along which all the phases coexist, i.e., for 
H = H o + k ( T ) - H '  there are d pure phases belonging respectively to 
GI,..., Gd if T <  T c. 

T h e o r e m  2. The function It(fl)=flk(fl-l), where E(T) is the 
coexistence curve of all the d phases, admits an asymptotic expansion of 
the form (3.21). 

This theorem will be proved in the next section. Then, according to 
Theorem 1, li satisfies the system of equations 

(ep--el) . l i=P(f l ,  li]p)--lP(fi, lill), p = 2  ..... d (4.1) 

This can be written in the vectorial form Eli = AP(fl, li) or 

li = E -1 AP(fl, li) : f(li) 

for E is invertible [cf. Eq. (2,9)]. Let 

(4.2) 

f~k3 = f o f  . . . .  f (ktimes) 
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Proposition 1.  Equation (4.2) has a unique solution It(fl)= 
Zn~>o Ixn e x p ( - f i E , )  in D a-  1, given by 

Ixn = fen + ~](0)n (4.3) 

where the rhs is the coefficient of e x p ( - 3 E n )  in the series f[n+~] (I t=0).  

Proof. O n e  can check easily that 13 r, r~>l, equipped with the 
distance 

d~(l/t, i~) = e - ~ "  if min{klix~ # vk} = n  

is a complete (ultra) metric space. Therefore, one has to show that f is a 
contraction in 13 d- 1 to conclude that Eq. (4.2) has a unique solution which 
is the fixed point of the iteration 

{Pk + 1  = f({i~k) 

N o w / 5  has the form 

P(fl, itlp)=ap+ ~ exp(- f lE=)  
n~>l  

where 

e x p ( -  aft (s)) 

= I-exp(-a#(o j)] 

•  EV. 2 
m~>l  k ) l  (~i ,..., C~k) 

a i ~ 0  
Xi E~ i =Em 

Since 

Z ~' A(0) e x p [ - i t ' B ( 0 ) ]  (4.4) 
O:Ho(O) = E n 

I~I ,,(J)] exp( - f iE , , )}  
i= l r-~i J 

ft(J) ~ C + exp(- f iEn)  exp(--aft (j)) 

(4.5) 

is a contraction in D for any n/> 1, It--* AP(It) will be a contraction in 
D a- l ,  and the linear transformation E -1 does not affect this property. 
Then, due to the convergence to the fixed point, (4.3) holds true. In (4.3), 
the number of iterations n + 1 could be replaced by any k > n. 

Due to Theorems 1 and 2 and Proposition 1, the solution It(fl) thus 
obtained is the asymptotic expansion of the coexistence curve lx(fi ). Let us 
notice that in order to calculate Ixn, one could replace P(fl, It Jp) in 
Eq. (4.1) by Pa(fl, itlP) [cf. Eq. (3.15)] with A~A(n). The equations 
written with PA determine the "coexistence curve [IA(fl) for a finite system." 
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Applying the proposition to n = 0, we obtain 

[to = E -~ Aa 

with 

(4.6) 

(~o-)i = o'i+ 1 - o-1, i =  1,..., d -  1 

The property [t(/3)~l~(/~) implies that [t(/~)~jt o as /~ ~ 0% which 
means that the coexistence curve 2(T) of all the d phases is differentiable 
at T =  0 and 

k( T) = T[to + o( T ) as T ~ 0  

Let I c {1, 2,..., d} and AI(0) c N  d 1 such that for k eAr(0) ,  
G [ H 0 + k ' H '  ] = Up~tGp, i.e., At(0 ) is the zero-temperature coexistence 
domain of [II phases (see Introduction). For a given kl~A1(0), we can 
prove Proposition 1 and Theorem 2 with kl replacing ko = 0: it is sufficient 
to restrict the phase diagram to different ( ] I [ -  1)-dimensional subspaces 
passing through kl. In almost all these subspaces the conditions of Sec- 
tion 2 will be satisfied with ko replaced by k~, where k~ is an ([11- 1)- 
dimensional vector representing k~ in the given subspace. Then the point 
k(T) = k'(T), where ~.(0) = kl,  k'(0) = k; ,  for fixed T is the intersection of 
the (d-]II)-dimensional  set A~(T) with the subspace in question. We 
obtain the differentiability at T =  0 of all the curves k(T) belonging to 
different intersections. Therefore we conclude that the coexistence surface 
At(T) is differentiable at T =  0. 

5. L O W - T E M P E R A T U R E  PHASE D I A G R A M  

To prove Theorems 1 and 2, one has to use the Pirogov-Sinai (PS) 
theory. For the appropriate generalization of the PS theory and for defini- 
tions and notations, we refer to our earlier paper. (1) One introduces the 
crystal partition function Z(FI BH) for the spin system with Hamiltonian 
(2.5) and Z(F[F) for contour models. Here FcCgp denotes a contour of 
type GpcG[Ho], and F is a z-functional on %. One then looks for 
functionals {F1,..., Fd} which solve the equations 

e-lV(r)l~PZ(Fl~H)=ebpL~ntrl Z(FIFp), Fe% 

b p  = e p  " I t  - -  6 p  - -  ~ Z ( F p )  - -  min{eq �9 IX - aq -- ~(Fq) } 
q 

where n(Fp) is the pressure for the contour model on ~p. For/3 sufficiently 
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large, there exists a unique solution {Fq = Fq(ri, g)}. Furthermore, for all p 
such that bp(fl, [1) = O, there is a pure phase associated with Gp and 

p th ( r i ,  ].1) ~- g(  Fp(ri ,  ~ ) ) -J~ ~ p - -  %" 

= max{rc(Fq(ri, ra)) + O'q --  eq"  ~} 
q 

(5.1) 

In particular, if ~t(ri) corresponds to the coexistence of the phases Gp and 
Gq,  then 

(% - eq)" g = Op - aq + U(Fp) - rC(Fq) (5.2) 

Following Slawny, (4) we introduce a pressure with cutoff E for the spin 
system, 

Pe(ri, la]p) = lim IA[-1 log ~ Z e x p [ - H P ~ r ( x l s ) ]  

where the sum is restricted to configurations x e f2(A ] p) such that for any 
elementary excitation ~ associated with x, Ho(~)~< E. 

In this case, PE(ri, P] P) can be represented by an expansion where the 
coefficients a,e(l~lp) are calculated from Eq. (3.18) with the additional 
restriction that 0(4)= 0 if Ho(~)> E. Since the potential is regular, one can 
show, using standard methods, (1~ that the expansion of Pe(ri, g l P )  is 
absolutely convergent for ri > rio(E). Moreover, a,e(~l p) = a,(la ] p) for all n 
with E,  <~ E. 

Following Slawny, one can then show that for any E there exists E'  
such that E'  --+ oo as E ~ oo and 

u(Fp(ri, ~(ri))) + ap - PE'(ri, ~(ri) fP) = o(e-~s as ri ~ oo 

for any curve la(ri) along which Gp is stable. Using (5.1), we thus obtain 

Pth(ri, l l ( r i ) )+ep 'g , (r i ) - -PE,(r i , | l ( r i ) lp)=o(e-~E ) (5.3) 

If li(ri) is the asymptotic series of g(fl), then (5.3) implies that 
P(ri, li(ri) I p) is the asymptotic expansion of pth(ri, g(ri)) + %.  ~t(ri), which 
proves the Theorem 1. 

In order to prove Theorem 2, let l~(fl) be the curve for which all phases 
coexist. We then have from (5.3) 

(ep - e,) �9 ~(ri) = PE'(ri, P(ri) [ P) - Pe,(ri, la(ri) I 1) + o(e-#e), 

i.e., 

p = 2  ..... d 

(5.4) 

O(ri) = fs + o(e ~E) (5.5) 
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where 

fe,(it) - E-1 APe,(~ ' la) 

[cf. Eq. (4.2)]. Consider now 

N 

ItN(/~) = Z It,, e-aE", EN <~E',E 
n~O 

(5.6) 

(5.7) 

where Itn are the coefficients of the solution of Eq. (4.2). One can see that 

]ttN(/~ ) = [E,(IIN(fl)) + o(e -BEN) (5.8) 

From Eqs. (5.5) and (5.8), we want to conclude that 

It(/~) - ~tU(/~ ) = o(e-~eN) for all N (5.9) 

i.e., that the asymptotic expansion fo lt(/~) exists. Under this assumption, 
we already proved in the previous section that li(/~) is given by Eq. (4.3). 

Equation (5.9) results from the following observation. The term of 
zero order of PE(/~, It[ p) is independent of It. One can therefore see that for 
any It, v e ~a -  1, 

[fE,(lt) -- fE,(v)[ <~ Cl(it, v)e -flgl lit - -  Vl (5.10) 

where Cl(it, v) is continuous. Replacing (5.5) and (5.8) by inequalities and 
taking their differences, we obtain 

l i t (H)-  ItN(H)l ~ I fE,( i t (B))- fE'(itN(/:~))l + C2(/L It(/~), I tN ( f l ) )e  -I~EN 

(5.11) 

where C2-- -}  0 a s  fl---, m. Let us insert (5.10) into (5.11); then 

I[I-[(/~) - -  I t U ( ] ~ ) l  ~ C 1 e -'BEI ] i t ( /~)  - -  I tN( ]~ ) l  -[- C2 e-aeN (5.12) 

Iterating this inequality n times with n chosen so that nEa > E~v, we obtain 

n - - I  

IIt(/~)- Itu(/~)l ~< C2e -~u ~ C~e -~k~' 
k = O  

+ C'~e -~'E' lit(/3) - laN(B)I (5.13) 

Noticing that It(/~) and ItN(/~) are bounded in a neighborhood of/~ = oo, 
Eq. (5.9) is established. 
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6. PHASE D I A G R A M  TO THE LOWEST ORDER 

As is well known from the PS theory, Eq. (5.1) generates the phase 
diagram {AI(T)} at positive temperatures T. It is understood that the 
construction is valid in a neighborhood of ko = 0. Primarily, one obtains a 
partition {MI(T)} of the space [~d 1 of vectors g+, defined by 

MI(T) = {la E ~a- 1] ~Z(Fp(1/T, IJ)) + ~pp(lX) is maximal for p ~ I} (6.1) 

for any nonempty I <  {1, 2,..., d} and 

Cpp(~) = O p -  ep "~ (6.2) 

Then, M~(T) is mapped onto the parameter space by ~ , - - T l a  [cf. 
Eq. (2.12)], giving 

A,(T) = TM,(T) = { TI~ I IL E Mr(T) } (6.3) 

For [I[ ~> 2, we can use the asymptotic expansion of MI(T) (cf. Theorem 2) 
to write 

A,(T) = { T(p + rr(la)) [ lJ ~ M,(0)} ~ TM,(0) } (6.4) 

where rv(/a) is a vector field on MI(O) (nonunique) and 

[rr(p)l <~Cexp(-E1/T) as T--+0 

uniformly in a neighborhood of llo [see Eq. (4.6)]. 
It turns out that this lowest order approximation is nontrivial if a ,  is 

not the same for all p. Since n(Fp(fl, 11)) -+ 0 as/7 --+ ~ ,  we obtain from Eqs. 
(5.1) and (6.1), respectively, 

lira pth(fl, ~)=max{q~p(la) } (6.5) 
~ p 

and 

M I ( 0 ) =  {11~ ~d 1L(pp(l~) is maximal for p e I }  (6.6) 

By comparison with 

A~,(0) = {;L ~ ~d  11 ep" • is minimal for p e I} (6.7) 

and recalling that ap-ep.la 0 is independent of p [cf. Eqs. (4.1) and (4.6)], 
we see that 

TM,(O) = A,(O) + TlJo (6.8) 
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and therefore 

AI(T) ~ At(O) + Tgo (6.9) 

If ap varies with p, then go r 0 and we get an overall shift as a first correc- 
tion to the zero-temperature phase diagram. 

Let p eMp(0); then ~op(p)> (pq(p) for all q Cp, and there exists a 
To = T0(B) such that peMp(T) if T <  T o and hence Tg~Ap(T). Thus, for 
T <  To there exists a pure phase of Ho + T g - H '  associated with Gp and 
there is none associated with Gq if q ~ p. 

For g = 0, q~q(p) = O-q, q = 1 ..... d; therefore, the pure phases of Ho near 
T = 0 belong to the classes with largest residual entropy, a result which was 
earlier obtained by Aizenman and Lieb. (9) This is in agreement with the 
principle of domination, (4) when domination takes places at the lowest 
order. 

Equation (6.5) tells us that p t h ( o 0 ,  B) is the convex envelope of the 
affine functions q~l(g),..-, c,0a(g). In Fig. 1, we have fixed a unit vector 
a ~ ~d-1 and plotted ~op(#a) versus # for all p. For generic a the linear 
parts of the convex envelope belong to a unique class Gp and for those 
values of # there exists a pure phase corresponding t o  Gp at low tem- 
peratures. The vertices give the slope of the coexistence curves at T =  0. 

One often represents {Ax(T)} in the spaee (k, T). The counterpart of 
Fig. 1 is obtained if we cut the extended phase diagram {Az(T), T)} by the 
plane (k=,~a,  T). This yields the phase diagram corresponding to the 
Hamiltonian Ho + )~a" H'. The result is shown in the approximation (6.9), 
in Fig. 2. The angular domain ik corresponds to 2 = Tg, with/~ varying in 
the interval where pth(oo, g) = q~ik, and the broken line to 2 = T~o,i, where 
/~o.i is the abscissa of a vertex of the convex envelope. Let us notice that 
fixing g = # a  corresponds to a situation when the degeneracy of d > 2  

p h(oo 

Fig. 1. q~p=ap-,Uep.a versus # for three phases. The thermodynamic pressure at T = 0  is 
their convex envelope [cf. Eq. (6.5)], 
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Fig. 2. 
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Phase diagram corresponding to Fig. 1, in the lowest order approximation. 

classes is partially lifted by a single "external field" H '  (=  a -H ' ) .  The 
analogous problem for systems without residual entropy was studied by 
Tarnawski.(11) 

7. EXAMPLES 

7.1. Gr i f f i ths-Bernasconi -Rys  Model  (12"13) 

7.1.1. Def in i t ion of  the Model .  The GBR model is a spin-1 
model on 7/2 defined by the formal Hamiltonian 

H= - K Z x ~ x ~ - g Z x ~ - h Z x  i, s  } (7.1) 
n n  i i 

where K is a positive constant and g, h are real parameters. For fixed h at 
low temperatures there is a phase transition as g varies. 

This model is interesting for two reasons. First, for h # 0 the phase 
transition is between two phases associated with two gsc and Slawny's 
method applies; but for h = 0, the phase transition takes place between one 
phase associated with a gsc and another phase associated with a class of 
gsc with nonvanishing entropy. The second reason is that this model is 
equivalent to the 2D Ising model and the coexistence surface can be com- 
puted explicitly: it is given by the equation 

1 -2~lhl 2K+g+lhJ+-~ln(l+e ) = 0  (7.2) 
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h 

A +  

Am 

-g  

Fig. 3. Zero-temperature phase diagram for the GBR model. 

Therefore it will be possible to compare the asymptotic expansion of the 
coexistence surface with the exact result and to understand in this case the 
mechanism by which the entropy contribution appears in the limit h ~ 0. 

The phase diagrams are shown in Figs. 3 and 4. The four classes we 
will have to consider are 

G0= {x ~ 

G = { x - -  = - 1 } ;  

G + = { x + ~ l }  

G1 = {xlx~= 1 for all i} 
(7.3) 

with residual entropy 

Oo=O + = o _  =0 ,  a ~ = l n  2 

3- 

g 

Fig. 4. Phase diagram for the GBR model at T>0. 
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For a given value of h we consider the unperturbed Hamiltonian Ho corre- 
sponding to the point on the coexistence line, i.e., g = - 2 K - I h f  and 

2 ,~, (x~ - x~) 2 + ~ x,([ht x i -  h) (7.4) 

if h > 0 ,  then G E H o ] = G o ~ G  + 

if h < 0 ,  then G [ H o ] = G o • G  

if h = 0 ,  then G [ H 0 ] = G  oUG1 

(For h = 0 and g r -2K,  there is one gsc x ~ if g < --2K, and one class GI 
if g > -2K.)  

For each value of h, G[H0] consists of two classes and thus 
r = d -  1 = 1. The perturbation 

-Zx  (7.5) 
i 

splits the degeneracy, and the one-parameter family of Hamiltonians which 
we consider is 

H =  H0 + 2H'  (7.6) 

It corresponds to the original Hamiltonian (7.1) with 

/~ - 2K-- Ih[ (7.7) g= 2 -  2 K -  fhl = ~ 

For this model the cells As are simply the sites of 2~ 2. 

7.1.2. C a s e  h = O :  G [ H o ] = G o w G  1. For h = 0  we have 
E n = ( n + l ) K  (n>~l), eo=0,  e l = - l ;  H ' ( ~ ) = - [ S ( ~ ) [  for p = 0 ,  and 
H'(~) = IS(~)I for p = 1 boundary conditions. Since 

~Oo = ao --  e o #  = 0 

( P l = a l - e l / t = l n 2 + #  

then 

# 0 = # ( T = 0 )  ~ r ~  [see Eq. (4.6)] 
e o - -  e I 

and we obtain the phase diagram to lowest order (Fig. 5): for # <  - l n  2 
( g < - 2 K - T l n 2 ) ,  the phase Go is stable, while for j ~ > - l n 2  

822/56/3-4-3  
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(a) 

Fig. 5. 

SOt6 et  al. 

q3 (b) 

% X---TIn 2 
NN\ 

0 \ \ 
\ 

T 

Phase diagram of the GBR model in the lowest order for h = 0 [cf. Eq. (7.7)]. It 
coincides with the exact solution. 

( g > - - 2 K - T l n 2 ) ,  the phase G~ is stable. In particular, for H0 
( g =  -2K) ,  the stable phase is G~. 

Computing the first coefficients an(/~lp) of the expansion (3.19), we 
find 

P(]~, #10) = ze-2#K + 2z2e--3#K + (Z 4 + 6.73 _ _~z.2)e--4#K _~_ . . .  

p(# ,#[1)=ln2+z- le  2#K+2 z 2e-3#K+( z 4 + 6  z 3 _~z-2)e 4#K+ ... 

(7.8) 

where z --- 2e u. 
The fixed-point equation (4.2) is therefore 

l n 2 - 1 n 2 = - l n 2 +  ~ EPm(z)-Pm(Z,-1)']e n#K (7.9) 
n~>2 

where Pm is a polynomial of order m, m =m(n) ,  with m =  O(n2). 
The solution of (7.9) is 2 = 1, i.e., 

/i(#) = - I n  2 or 2(T) = - T i n  2 

We have thus obtained the coexistence curve of (7.1) for h = 0 

g =  - 2 K -  Tin  2 

which is the exact solution (7.2). 
For  # ~< --In 2 (z ~< 1) Go is stable and the asymptotic expansion of the 

thermodynamic pressure is given by P(#, p]0);  for # >/ - I n  2 (z/> 1), G1 is 
stable and the asymptotic expansion is given by/~ + P(#, # [ 1). 
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7.1.3. Case h>O: G[Ho]=GouG+. For h>O we have 

E n = p K + q h  ( p , q  integers), e0=0,  e+ = -1 ;  H ' ( ~ ) =  -IS(~)I for 0 and 
H ' ( [ x ]  ) = [ {if xi = 0 } [ for + boundary conditions. Since 

~o o = a o - eoF = 0 

q~+ = a + - e + # = #  

then 

~o=~(T=O)  a o - a +  0 
eo-- e+ 

and we obtain the phase diagram to lowest order (Fig. 6): for # < 0  
( g <  - 2 K - h )  the phase G O is table, while for # > 0  ( g >  - 2 K - h )  the 
phase G+ is stable. From the zeroth order we cannot decide which of Go 
and G1 is stable for g = - 2 K - h .  

Computing the first coefficients a n ( # [ p ) ,  we obtain 

l~(fl, ,l~ t O ) = ~ e -  2flK-.~ - 2~2e--3~X + (~4 + 6~3 _ 5 ~2,1e-4f lK I + ' ' "  

P(fl, # I + ) = ln(1 + e 2~K) + ~ - 1 e - 2~K + 2~ - z e 3~K 

+ (~--4 + 6 ~ - 3  __ 5_~-2)e-4~x + . . .  (7.10) 2 

where 

= e"(1 + e -2/~h) 

The fixed-point equation (4.2) is 

In $ - l n ( 1  +e-Zah)=  --ln(1 + e  2ah)+ ~ [ p m ( 4 ) _ _ p m ( ~ - l ) ] e - . ~ K  
n ~ 2  

% 

(a) (b) 
Y 

+ 

"-k 

Fig. 6~ Phase diagram of the GBR model in the lowest order for h # 0 (dashed line), and the 
exact solution (full line). 
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which gives ~ = 1, i.e., 

/~(fl) = ~ ,  ( -  1)" e .2~h = - l n ( 1  + e -2~h)  = #(fi) 
n~>l  n 

We have thus obtained the coexistence curve of (7.1) for h > 0: 

g= - 2 K - h -  Tln(1 + e  -2~h) 

For # <0,  G o is stable and the asymptotic expansion of thermodynamic 
pressure is given by P(fl ,#[0),  while for #>~0, G+ is stable and the 
asymptotic expansion is given by # + P(fi, #1 + )- In particular, for Ho 
( g =  -2K-h) the stable phase is G+. 

To conclude this discussion, we note that one passes continuously 
from the phase G+ to the phase G_ : there is no phase transition at h = 0 
for #c > - 2 K  (Fig. 4). 

7.2. Magnet ic  Lattice Gas Mode l  I 

7.2.1. Def ini t ion of the Model .  This model, which we have 
previously discussed, (1) is a spin-1 model on 7/2 defined by 

H= -~(Jxixj+KlX~X~)-K2 Z xZx~-gZx~ (7.11) 
nn nnn  i 

We consider the case where J and K 1 are constant, J >  0, J +  K1 < 0; K2 
and g are real parameters with/s > 0. 

The zero-temperature phase diagram was described in ref. 1 and is 
reproduced in Fig. 7. 

A 1 2 - f -  

0 

A + -  

g 

Fig. 7. Zero temperature phase diagram for the magnetic lattice gas model [Eq. (7.11)]. 



Lattice Systems with Residual Entropy 281 

The  five classes we have to consider are the following: 

G o = { X ~  G + = { x  + = 1 } ;  G = { x - = - l }  

G1 = {x{x i  = 0 for is + i2 even, x~ = 1 for il + i2 odd } 

G2 - {xl x~ = 1 for il + i2 even, xi = 0 for i 1 + i 2 odd  } 

with residual en t ropy  

a o = a +  = a _  = 0 ,  e l = a 2 =  �89 2 

The two classes (G+, G_)  and the two classes (G1, G2) are related by 
symmetry .  

Fo r  a given value of K2, we consider the unper tu rbed  Hami l ton ian  
cor responding  to the points  on the coexistence lines, i.e., 

(A) g =  - 2 K >  G[Ho] = Gow G~ w G2 

(B) g =  - 2 K 2 - 4 ( J + K 1 ) ,  G [ H o ]  = G l w G 2 w G +  w G _  

7.2.2. Coexistence of the Phases Go, G1, G2. The unper- 
turbed Hami l ton i an  is 

H o =  - ~ ( J x i x i + K l x ~ x ] ) + � 8 9  Z ( x ~ - x ] )  2 (7.12) 
n12 [ i n n  

and we consider the one -pa rame te r  family of  Hami l ton ians  

2 H =  H o + ).H', H '  = - ~ x i 
i 

(which does not  split the degeneracy associated with symmetry) .  
The connect ion with the original Hami l t on i an  (7.11 ) is given by 

# 
g = 2 - 2K2 = ~ -  2K2 (7.13) 

(The cells A~ are plaquet tes  with four sites.) Since 

1 e o = 0, e 1 -~ e2 = 2 

we have 

~Oo = Oo - eo~ = 0 

~ l n 2 + � 8 9  ~01 = Cp2 = o - l - - e 1 # =  ~ 
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Thus 

#o = # ( T =  0) - ~r~ - al _ - l n  2 
e 0 - -  e I 

which yields the phase diagram to lowest order (Fig. 8): the phase Go is 
stable for # < - l n  2 (g < - 2 K 2 -  T in  2), and the phases G1, G2 are stable 
for # > - l n 2  ( g > - 2 K 2 - T l n 2 ) .  In particular, for Ho ( g = - 2 / s  the 
stable phases are G1 and G2. 
Computing the first coefficients a,(#l  p) with K2 > J +  2 I J +  Kll, we find 

/5(/~, #10) = 2e~e -2~K + 8eZ~'e -3~K2 + (48e 3~ - 18eZ~)e -4~K2 + ... 

P(fl, #l 1 )=  �89 2 +  �88 "e 2~x2+ ~e,e-2~/~2 2J--2Kl) 
_}_ l e#e--2fl(K2-- J-- 2Kl) _~ . . .  

The fixed-point equation (4.2) 

/i = - In 2 + (4e ~ -  �89 ;')e -2~x2- ler~e-2~(K2 2s-2K1) 

__ � 8 9  J - - 2 K I )  + 

gives the asymptotic expansion for the coexistence curve: 

#(/~) = - I n  2 + e 2aK2_ ~ e  213(K2--2J--2K1)-- le--ZB(K2-J 2K1)+ . . .  

Therefore the coexistence curve is 

g(T) = -2K2 + T [ - l n  2 + e 2~K2_ 1~ e 2~(K2-2S-2/~,) + . . . ]  

For  #~< - l n  2, G o is stable and the asymptotic expansion for the ther- 
modynamic pressure is given by P(//, #L0), while for # > .- ln 2, G1 is stable 
and the asymptotic expansion is given by �89 1). The phase 
diagram is shown in Fig. 10. 

/ 
('~)o /-L~2 

,.? 

/ 0', I 1,2 

0 

Fig. 8. Phase diagram of the magnetic lattice gas model in the lowest order around point A 
of Fig. 7. 
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7.2.3. Coexistence of the Phases G1, G2, G + ,  G_.  In this 
case, the unperturbed Hamiltonian and the one-parameter family of 
Hamiltonians are given by 

H o =  - - 2  [Jxixj + KlX~Xf - (J  + K1)(x2i + X2-  1)3 + �89 ~ (x~-  x2) 2 
nn n n n  

H = H o +  2H', H ' =  - ~  x 2 
i 

and the connection with (7.11) is given by 

g = 2 -- 2K2 - 4(J  + Ka) 

Notice that we subtracted an infinite constant term in 
vanishes on gsc. Since 

e l = e 2 =  i ,  e + = e _ =  --1 

order that H o 

we have 

cPl = (P2 = al - e l#  = �89 in 2 + �89 

cp+ =(p_  = a +  - - e + # = , u  

Thus 

#o= l~(T=O) - a l - a  + = l n 2  
C 1 - - e +  

which gives the phase diagram to lowest order (Fig. 9): the phases G1, G2 
are stable for g < l n 2  ( g < - 2 K 2 + 4 ] J + K 1 ]  + T l n 2 ) ,  while the phases 

(a) 

Fig. 9. 

la 

(b) 

1,2 

T  .=Tln2 
/ 

/ 
/ 

/ + , -  
/ 

/ 

Phase diagram of the magnetic lattice gas model in the lowest order around point B 
of Fig. 7. 
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G+, G_ are stable for # > l n 2  (g>-2K2+41J+KII+TIn2). In 
particular, for Ho (g = 2/(2 + 4 ] J+  K1] ) the stable phases are G1 and G2. 

We obtain 

/6(fl, pl + ) = e  *'e-2#KZ-l-e-SPJ+2e 21*e-3#K2+ .-- 

ff(fl,/~[ 1)= l l n  2 +  leue-e#K2+ �88 ~e -2#(K2-2J 2K1)-~ - ' ' "  

and the fixed-point equation (4.2) reads 

/~ = In 2 + (~e a -  2e-~)e 2#/~2 + �89 2 f l (K2 - -2J - -ZK1)  + " ' "  

which implies 

#(fl) ln2 3,,-2#K=_l,,-2#(K2 2J 2KI)_L_ 

The corresponding coexistence curve is shown in Fig. 10: 

g(T) = --2K2 -- 4 ( J +  K,) + TOn 2 - �88 -2eK2 + -.-) 

For # <In  2, G~ and G 2 are stable and the asymptotic expansion of the 
thermodynamic pressure is given by �89 +/~(fl, #11), while for/ , /> In 2, G+ 
and G are stable and the asymptotic expansion is given by 

u+#(#,~l +). 
7.2.4. Magne t ic  Latt ice Gas Model  II. We consider the unper- 

turbed Hamiltonian (7.12) with J +  KI -- 0 ( K =  K2): 

H o =  -J~xixj(1--xixj)+�89 (xZ--x2) 2 (7.14) 
n n  n n n  

G[H0] =GouG1uG2uG+ uG_ 

o 0 = o + = a  =0,  a l=o-2= �89  

T 

\ 

0 

-2Kz 

/ 
/ 

/ 

q,2 + , -  

-2K,-4(>K,) g 

Fig. 10. Coexistence curve for the magnetic lattice gas model. 
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To study the phase diagram, we introduce the two-parameter family of 
Hamiltonians (which do not lift the degeneracy associated with symmetry): 

H = H o + 2(1)H (1) + 2~2)H ~2~ 

H ( ' ) =  - E  x,xj, H(2'= - E x2x2 
n n  n n n  

The zero-temperature phase diagram is shown in Fig. ! 1. Since 

e o = ( 0 , 0 ) ,  % = % = ( 0 , - 1 ) ,  e + = e  = ( - 2 ,  - 2 )  

we have 

~Oo = O'o - eo" It = 0 

~01 = (P2  = 0"1 - -  e l  " I t  = 1 In 2 + #(2) 

~p+ =~p_ =~7+ - - e+  .It = 2#(1) + 2/.z (2) 

The phase diagram to lowest order is given by 

Mo(0) = {It] �89 In 2 + #~2) < 0, #~1~ + #(2) < 0} 

M~,2(0) = {Ill �89 In 2 + #(2) > 0, �89 In 2 -  #{2) _ 2#o) > 0} 

M I + _ ( 0 ) =  {it[#{1) +/*(2) > 0, �89 2 - # { 2 ) - 2 # ( 1 ) < 0 }  

A 

A 1 2 + -  

A12'  
A 0  

A + _  

 Ao+_ 
Fig. 11. Zero temperature phase diagram for the model (7.14). 
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which implies I t o = i t ( T = 0 ) =  (�89 - � 8 9  these are represented in 
Fig. 12. We then obtain the asymptotic expansion 

pth(fl, p[0)  = 2e-2/~K + 8eU~2)e 3~K + 2(2#,11) + 24e2,,(2) _ 9)e-4/~K + . . .  

pth(fi, Ill + ) = 2(#(1) + #(2)) + e - 4 ( l a ( l ) + # ( 2 ) ) e - Z f l K - - } -  e-8~'">e-Saa 

+ 2e-  (8~(i) + 6#(2) e -  3]~K . .~ . . .  

pth(fl, it ] 1) = #(2) + �89 In 2 + �88 + le4,u(l))e 2/~K 

1 ~2/.t(1) ~ - -  2 ]3 (K + J )  ~_ + a e  e . . . -  

T h e  fixed-point equations for the coexistence curve of all phases are 

-/i(2) = �89 In 2 + �88 (e _4a~2> + �88 8)e-2aK+ .. .  

- 2 ( / i  (*) + fi (2/) = (e 4(~/1)+~(21)_ 2)e_2aK + . . .  

which yields 

/.to) = �89 in 2 - Je-2flK .+ . . .  

# ( 2 ) =  - -  �89 in 2 + 3e-2e/<+ . . .  

For  the coexistence surface between the phases associated with Go, G+,  
G , we find 

_ 2(fi(1) + / j ( 2 ) )  = (e - - 4 ( / i ( 1 )  + /2 (2 ) )  - -  2) e --2ilK + . . .  

Therefore 
#(1) ..]_ #(2) = l e - - 2 3 K  + . . .  

2(2) = _)~(1) + T[�89 + . . .]  

M.12 

--It.2 

M 

(h) T 0 

. . . . . . . . . .  } 

Fig. 12. Zero-order phase diagram for the model (7.14). 
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Similarly, for the coexistence surface between the phases Go, G1, G2 

= '  In 2 + (�88 -4a(2~ + ~6 e4~"~- 2)e-2eK + . . . .  _fi(2~ 

which gives 

2 ~2)= T{ - l l n  2 +  (1 - ~e4'~;l")e 2~K+ ...} 

Finally, for the coexistence surface between the phases GI, G2, G + ,  G_ 

/ l  - - 4 f i  ( 2 ) -  1 4f i  (t) --4(ii(1)+fi(2))) e 2flK~_ 2fi(1) -{- fi (2) �89 2 +  (ae -+- gge --e -.. 

gives 

)32)= -2)~ (1) + T{�89 In 2 + ~6(e 8~' ' -  3e4fl'z"')e -2ilk -+- " "} 

These results are summarized in Fig. 13. 
To conclude this example, we consider the case where the degeneracy 

of Ho, (7.14), is only partially lifted, i.e., 

H = Ho + )~H (2) 

It corresponds to the original Hamiltonian (7.11) with J + K 1 - - 0 ,  
g--  -2K,  /(2 = K +  2. The zero-temperature phase diagram is represented 
by Fig. 7, where the two lines coincide and correspond to the coexistence 
of the five classes. 

(a) 

\ 

MI= 

Mo 

. t in  (b) t 

, M+_ff) },I, 
\ =-  t.~ I1) 

! _~_ j - -  

fr) " ,", 

Fig. 13. First order phase diagram for the model (7.14). 
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/ 
- § 

I 

ktn2 
(a) 

T 

O 

\ 
\ 

k 

t 

(b) 

Fig. 14. Lowest order phase diagram for the model (7.11) KI=--J,  g = - 2 K  and 
Kz=K+2. 

The phase diagram to lowest order (Fig. 14) is obtained from 

r = ao -- %#  = 0 

~Ol=~O2=r r l - - e lp=  �89 2 + #  

q0+ =(p_  = a +  - e + / ~  = 2# 

_ 1 In 2, the phases G1 G2 For  # < �89 In 2, the phase Go is stable; for I#1 < ~ 
are stable, and for # > > �89 2, the phases G+,  G_ are stable. In par- 
ticular, for Ho the phases Gt and .G2 are stable. The asymptotic expansions 
for the coexistence curve for the phases Go, GI,  G2 is 

1 In 2 + 15 213K .~ # =  - ~  i~e . . .  

and for the coexistence curve for the phases GI, G2, G+,  G_ it is 

# = � 8 9 1 8 9  z~/~+. . .  
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APPENDIX 

The combinatorial factor CA(O) is determined in the following way. 
For any 0 e [X p] we construct a graph gA(O): (i) Any ~ such that 0(~)> 0 
is represented by a complete subgraph go(~.) of 0(r vertices. Thus, gA(O)  

has altogether Z 0(~) vertices. (ii) If S(r rood A and S(~2)mod A are 
connected, then g0(r w go(~2) is completed with the missing edges. 

N o w  {i iff~176 
CA(O) = S(r is not faithfully represented on TA (A.1) 

~" ( - 1 )  # {eagcs of~} otherwise 
= g~(O) 

where the summation goes over connected subgraphs covering all the 
vertices of gA(O). If A is sufficiently large, then gA(O)=g(0) and CA(O)= 
C(O), i.e., they are independent of A. Notice that CA(O)=O if gA(O) is 
disconnected. 
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